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Here, we explore the combination of sub-wavelength, two-dimensional atomic arrays and Ryd-
berg interactions as a powerful platform to realize strong, coherent interactions between individual
photons with high fidelity. In particular, the spatial ordering of the atoms guarantees efficient atom-
light interactions without the possibility of scattering light into unwanted directions, for example,
allowing the array to act as a perfect mirror for individual photons. In turn, Rydberg interactions
enable single photons to alter the optical response of the array within a potentially large blockade
radius Rb, which can effectively punch a large “hole” for subsequent photons. We show that such a
system enables a coherent photon-photon gate or switch, with an error scaling ∼ R−4

b that is signif-
icantly better than the best known scaling in a disordered ensemble. We also investigate the optical
properties of the system in the limit of strong input intensities. Although this a priori represents
a complicated, many-body quantum driven dissipative system, we find that the behavior can be
captured well by a semi-classical model based on holes punched in a classical mirror.

PACS numbers: 42.50.Ct, 42.50.Nn

Introduction.–Achieving strong and controlled optical
nonlinearities at the level of single photons represents
one of the greatest goals and challenges within quan-
tum and nonlinear optics [1]. A highly promising ap-
proach in recent years has emerged based upon Ryd-
berg electromagnetically induced transparency (rEIT).
In standard EIT, an additional pump field enables probe
photons to hybridize with meta-stable atomic excitations
and propagate without loss (see Fig. 1a,b) [2–4]. When
the metastable state corresponds to a high-lying Ryd-
berg level (rEIT), this effect becomes highly nonlinear
as strong atomic Rydberg interactions destroy the reso-
nance condition needed for EIT. Then, a second photon
within a “blockade radius” of the first effectively sees a
highly scattering two-level medium. Such strong photon-
photon interactions mediated by Rydberg atoms are now
routinely observed in experiments [5–10].

However, despite many spectacular experiments, it re-
mains challenging to functionalize rEIT into coherent,
single-photon-level nonlinear devices. A major reason
is that the two-level atomic medium within the block-
ade radius is naturally dissipative, and tends to scatter
the second photon into random uncontrolled directions.
Dissipation can be suppressed, but this also reduces the
coherent response and necessitates a large resource over-
head to compensate [11]. The best known gate protocol
has a theoretically predicted error that scales with block-
ade radius (or more properly, optical depth per blockade

radius) as ∼ R−3/2
b [7].

∗ These authors have equally contributed to this work.

Intuitively, a much more robust path to quantum non-
linear optics could be established, if an ensemble of two-
level atoms could be made completely lossless, even for
resonant light. Remarkably, this can occur when the
atoms are positioned in a defect-free array with sub-
wavelength lattice constant. Then, interference in emis-
sion combined with the spatial ordering ensures that
atoms cannot scatter light into random directions, but
only into the same mode (either in the backward or for-
ward directions) as the light coming in. The optical prop-
erties of arrays have thus attracted significant interest,
especially in the linear optical regime [12–28]. As one
particularly relevant example, it has been theoretically
predicted [17, 19, 29] and experimentally observed [23]
that a two-dimensional (2D) array can act as a nearly
perfect mirror for weak resonant light (Fig. 1c). The
nonlinear optical properties of arrays have also begun to
be explored, such as using the two-level nature of the
atoms themselves [30–32] or the atomic motion [33], as
has the conditioning of the linear response, based on Ry-
dberg blockade, to produce interesting quantum states of
light [27, 28].

Here, we explore the combination of 2D arrays and
Rydberg interactions as a powerful platform for quantum
nonlinear optics. First, we investigate the second-order
quantum correlations of the reflected field, in the pres-
ence of Rydberg dressing interactions. In particular, we
show that the field becomes strongly anti-bunched once
the blockade radius exceeds the incident beam waist,
indicating the inability of the system to simultaneously
reflect two photons at once. This intuitively results from
a reflected photon momentarily punching a large “hole”
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in the atomic mirror. Motivated by this signature of
strong nonlinearities, we then propose a protocol to
realize a coherent photon-photon gate or switch, where
the presence (absence) of a first photon results in the
transmission (reflection) of a second photon. We also
show that our approach provides a gate error with a
very favorable scaling, decreasing with blockade radius
as ∼ R−4

b . Finally, we investigate the optical response
of such an array in the many-body limit of high input
intensity. We find that the system exhibits a non-trivial
dependence of reflectance, transmittance, and loss
on driving power and blockade radius. Interestingly,
although this a priori represents a complicated, many-
body quantum driven dissipative system, we find that
the behavior can be captured well by a semi-classical
stochastic model based on holes punched in the mirror.

System and Formalism.– Let us consider a two-
dimensional square array (lattice constant d) of Na = N2

atoms trapped at fixed positions in free space in the z = 0
plane, and with ground and excited states (|g〉 and |e〉
respectively) with an optically allowed transition with
electric dipole matrix element ℘ oriented along one of
the lattice axes. Each atomic transition will not only
interact with an incoming field, which we take to be a
coherent state with spatial mode Ein(r) and frequency
ωL, but also the fields produced by other atoms. Start-
ing from the full atom-light Hamiltonian and integrating
out the photonic degrees of freedom within the Born-
Markov approximation [34], the atoms are governed by
the master equation

˙̂ρ = −(i/h̄)
(
Heff ρ̂− ρ̂H†eff

)
+ Ljump [ρ̂] , (1a)

Heff/h̄ = −
(
δ + i

Γ0

2

) Na∑
i=1

σ̂eei −
Na∑
i=1

(Ωiσ̂
ge
i + h.c.)

+

Na∑
i,j=1,i6=j

(
J ij − iΓ

ij

2

)
σ̂egi σ̂

ge
j + V̂Ryd, (1b)

Ljump[ρ̂] =

Na∑
i,j=1

Γij σ̂gej ρ̂σ̂
eg
i . (1c)

Here we define the atomic operators σ̂αβi = |αi〉〈βi| with
{α, β} ∈ {g, e}, δ = ωL−ω0 is the detuning with respect
to the single atom bare frequency ω0, and Ωi = ℘·Ein(ri)
is the Rabi frequency at atomic position ri. The term
V̂Ryd associated with Rydberg interactions will be spec-
ified later. The photon-mediated dipole-dipole interac-
tions between atoms are characterized by

J ij = −µ0ω
2
0

h̄
℘∗ · ReG(ri − rj , ω0) · ℘, (2a)

Γij =
2µ0 ω

2
0

h̄
℘∗ · ImG(ri − rj , ω0) · ℘, (2b)

FIG. 1. (a) Level diagram of single three-level atom, with
ground (|g〉), excited (|e〉), and Rydberg (|r〉) levels, and rel-
evant detunings and Rabi frequencies indicated. (b) In rEIT
in a disordered ensemble, an atom in a Rydberg level (red)
creates an effective medium of two-level atoms (blue) within
a blockade radius Rb, which strongly scatters near-resonant,
incident light. (c) An array of two-level atoms (with states
|g, e〉) perfectly reflects weak resonant light. Here, we illus-
trate a Gaussian beam with waist w0.

with J ij and Γij describing coherent interactions and col-
lective emission, respectively. G(r, ω0) is the electromag-
netic Green’s tensor in free space,

G(r, ω0) =
eik0r

4πk2
0r

3

[
(k2

0r
2 + ik0r − 1)1 +

+(−k2
0r

2 − 3ik0r + 3)
r⊗ r

r2

]
, (3)

with k0 = ω0/c. For a single isolated atom, the excited-
state spontaneous emission rate is given by Γii ≡ Γ0 =
℘2k3

0/(3πh̄ε0).
Once the dynamics of Eq. (1a) are solved, the field

correlations can be reconstructed from an input-output
relation [35–38]. Generally, the atoms will emit a quan-

tum field Ê(r) into all directions, many of which cannot
be detected. Instead, we consider an experimentally real-
istic scenario, in which an input mode (e.g., a Gaussian)
is defined, and light is collected back into the same mode
in the backward (reflected) or forward (transmitted) di-
rections. Defining quantum fields projected into these
discrete detection modes Edet(r) (with det = (R, T )),
the input-output relation reads

Êdet = Êdet,in + i

√
k0

2h̄ε0A

Na∑
j=1

E∗det(rj) · ℘σ̂
ge
j (4)

where Êdet,in is the quantum input field in the partic-
ular mode, and A =

∫
z=const

E∗det(r)Edet(r)d2r. This

normalization is chosen so that 〈Ê†detÊdet〉 is the rate of
photons detected in the mode.

Linear regime and perfect reflection.– We first briefly
review a central result to the rest of the paper, that an
infinite 2D array can behave as a perfect mirror for single
photons. Specifically, let us consider a plane-wave input
field ∼ eik·r with in-plane and normal wavevector com-
ponents k‖ and kz, respectively, satisfying |k‖|2 + k2

z =



3

(ωL/c)
2. We will work in the limit of weak driving field

amplitude, where one can restrict the atomic Hilbert
space to just a single excitation. Due to the system
periodicity, the driving field only couples to collective

spin waves |k‖〉 = N
−1/2
a

∑
j e

ik‖·rj σ̂egj |g〉
⊗Na , with the

same in-plane wavevector. In turn, the periodicity en-
sures that the spin wave can only emit light in well-
defined directions (diffraction orders), with all but the
fundamental directions ±kz becoming evanescent for suf-
ficiently small lattice constant. Defining the detection
modes in Eq. (4) to be transmitted and reflected plane
waves ER,T ∼ eik‖·ρ±ikzz (with ρ being the in-plane po-
sition), the reflection and transmission amplitudes in this
limit are [19]

r =
〈ÊR〉
〈ÊT,in〉

= −
iΓk‖/2

δ −∆k‖ + iΓk‖/2
, t = 1 + r. (5)

The condition for only the fundamental diffraction order
to be radiative is satisfied for a range of incident wavevec-
tors around k‖ = 0 when d < λ0, and for all incidence an-

gles once d < λ0/2. Here, Γk‖ = (3π/k2
0d

2)(1− |k‖|2/k2
0)

and ∆k‖ =
∑
j 6=0 e

ik‖·(rj−r0)J0j are the collective decay

rates and resonance frequency shifts (with respect to the
bare atomic frequency) of the spin wave mode k‖ [39],
arising from the interaction of atoms with the fields of
other atoms. Notably, when the driving field resonantly
excites a spin wave mode (δ = ∆k‖), the array becomes

purely reflecting, i.e. |r|2 = 1, as a result of perfect
destructive interference in transmission between the in-
cident and re-radiated fields.

In the case of a finite array, the reflection is slightly
reduced from unity. For concreteness, we take a Gaus-
sian input beam propagating perpendicularly to the ar-
ray, whose spatial profile at the atomic plane is Ein(ρ, z =

0) = E0e
−ρ2/w2

0 , with beam waist w0 (Fig. 1c). Then, the
reflectance R = |r|2 is approximately given by [21]

R ≈ erf4(Nd/
√

2w0)− CR(d)(λ/w0)4, (6)

with CR(d) being a constant depending on the lattice
parameter. The first term, containing the error function
erf(Nd/

√
2w0), represents the imperfection of the

Gaussian mode extending beyond the array boundaries.
The term CR(d)(λ0/w0)4 arises from the finite beam
waist and persists even for an infinite array. Physically,
perfect reflection requires a resonance condition δ = ∆k‖

that depends on the incident wavevector, which cannot
be simultaneously satisfied for a Gaussian beam that is
a superposition of wavevectors.

Rydberg dressing.– We now consider the addition of
a high lying Rydberg state |r〉 coupled to the excited
state |e〉 by a uniform classical control field with Rabi
frequency Ωc, and detuning δc from the bare |e〉-|r〉
transition. We also introduce the two-photon detun-
ing ∆ = δ + δc (see Fig. 1a). Rydberg atoms un-
dergo a strong van der Waals interaction, of the form
V̂vdW =

∑
i 6=j C6r

−6
ij σ̂

rr
i σ̂

rr
j , with rij = |ri − rj |.

Instead of the typical rEIT approach for nonlinear
optics, we consider an alternative “Rydberg dressing”
regime, more commonly applied within ultracold atomic
physics [40, 41]. While rEIT is certainly valid in arrays as
well [27], the dressing scheme allows one to make the mir-
ror nonlinear for multiple photons, while simultaneously
reducing the Hilbert space from three to two states per
atom, which aids calculations in the many-body limit.

We consider two separate dressing schemes, both
characterized by a large control field detuning |δc| � Ωc.
In general, for just a single atom in state |e〉, the control
field induces an ac-Stark shift ∆ac ≈ Ω2

c/δc − Ω4
c/δ

3
c ,

considering corrections up to Ω4
c . In the first scheme,

to be used when calculating second-order correlation
functions or in the strong driving limit, the state |r〉
is only virtually populated, but Rydberg interactions
nonetheless disrupt the Stark shift for two nearby atoms
in |e〉, introducing a correction of order Ω4

c/δ
3
c . In the

second scheme, to be used in the photon gate, an incom-
ing photon will be stored as a single Rydberg excitation,
and its presence suppresses the entire ac-Stark shift for
any |e〉 atom within the blockaded region. In either case,
the Rydberg dressing interaction can be approximated
by a step function, V̂ eeRyd ≈

∑
i 6=j VΘ(Rb − rij)σ̂

ee
i σ̂

ee
j

or V̂ reRyd ≈
∑
i 6=j VΘ(Rb − rij)σ̂

rr
i σ̂

ee
j for the first

and second schemes, respectively (see Appendix A).
The strength of V is only fundamentally limited by
laser power, while the blockade radius Rb depends on
detuning δc and the C6 coefficient. We will largely
work in the simplified limit where V → ∞, discussing
corrections (particularly to the gate fidelity) as rele-
vant. We also apply the convention that Θ(0) = 1,
e.g., Rb = d implies that nearest neighbors are blockaded.

Optical nonlinearities in the weak driving limit.– A sig-
nature of strong single-photon-level nonlinearities is often
revealed by the second-order correlation function, which
we now calculate for the reflected field. Specifically, we
consider a Gaussian input beam, weakly driving an ar-
ray of large enough size compared to the beam waist
(w0/d = 0.35N), so that diffraction off the edges can
be neglected, and its frequency is aligned with the reso-
nance condition δ = ∆k‖=0. To evaluate the second or-
der correlation in the weak driving limit, we truncate the
atomic system at two excitations, solve the steady-state
atomic dynamics (including the Rydberg dressing V̂ eeRyd),

and then use the input-output relation (4) to calculate

g
(2)
R = 〈Ê†RÊ

†
RÊRÊR〉 /〈Ê†RÊR〉2 (see Appendix B). Phys-

ically, g
(2)
R characterizes the relative probability of im-

mediately detecting a second reflected photon, given the
detection of a first reflected photon.

First, in Fig. 2a, we plot the numerical results of g
(2)
R ,

as a function of the squared ratio of blockade radius
to beam waist (Rb/w0)2, taking an infinite interaction

V → ∞. g
(2)
R is already remarkably reduced from unity

for Rb ∼ w0, and this “anti-bunching” becomes perfect

(g
(2)
R → 0) as Rb increases further, indicating the impos-
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FIG. 2. (a) Two-photon correlation function in reflection g
(2)
R ,

as a function of the squared ratio of blockade radius to beam

waist R2
b/w

2
0, for N = 16. Strong anti-bunching (g

(2)
R → 0)

is achieved for Rb > w0. The inset shows g
(2)
R in the ab-

sence of Rydberg interactions, as a function of approximate
number of illuminated atoms Ni = πw2

0/d
2 for linear array

size N ∈ [4, 15]. A small amount of anti-bunching arises due

to saturation, as modeled well by g
(2)
R ∼ (1 − 1/Ni)

2 (solid
line). Other parameters are: beam waist w0 = 0.35Nd, lat-
tice constant d/λ0 = 1/2. (b) After a first photon is detected
in reflection a hole of radius Rb is effectively punched in the
atomic mirror due to Rydberg blockade.

sibility to reflect two photons simultaneously. Intuitively,
this effect arises because the detection of a first reflected
photon implies that one atom within the illumination
area had to be excited. However, the Rydberg block-
ade prohibits another atom from being simultaneously
excited a radius Rb, which effectively punches a hole of
that size in the mirror (Fig. 2b). Note that without Ry-
dberg interactions, detection of a reflected photon from
an array of two-level atoms would only produce a single-
atom hole in the mirror. This would result in a scaling

g
(2)
R ∼ (1−1/Ni)

2 (see Appendix C), where Ni ∼ πw2
0/d

2

is approximately the number of atoms illuminated by the

Gaussian beam (inset of Fig. 2a). Here, g
(2)
R ∼ 1 implies

that the first reflected photon has almost no impact on
the ability of the mirror to reflect a second photon, i.e.
the mirror is highly linear.

These results suggest that a blockaded 2D array is the
“ultimate” nonlinear element. In particular, it is lossless,
unable to scatter light into modes beyond those sent in.
Furthermore, the atom-light interaction heuristically is
100% efficient due to the combination of atom number
and strong collective effects, as suggested by perfect re-
flection, but retains the nonlinearity of an ideal two-level
system. While our analysis is phenomenological thus far,
we now discuss how to realize the specific application of
a high-fidelity single-photon switch.

Gate protocol.– We first summarize the main steps of
the single-photon switch, before analyzing them in detail.
In this switch, the presence (absence) of a first “gate”
photon conditions the array to be transmitting (reflect-
ing) for a subsequent “signal” photon. Such a switch can
be directly converted into a photon-photon gate with an
additional classical beam-splitter, that converts the prop-

10 20

R
b
/d

0

2

4

w
op

t /

15 1510 20

R
b
/d

op
t

10

10-4

10-2

10-3

-5

Ωc

(a) 

w2

Reflection (0) Transmission (1)

(c) 

Ωc
|e

|g

|r

or

(b) 

Ωc
|e

|g

|r

|e

|g

|r
Ωc

|e

|g

|rΩc Ωc

1555

w1

0

Ωc

w2

FIG. 3. (a) Schematic of switch protocol. Initially (left
panel), a gate pulse (red arrows) consisting of either zero (0)
or one photon (1) is stored in the Rydberg level via a reso-
nant control field (blue arrow). Afterwards, the control field
is far detuned to induce Rydberg dressing (|δc| � |Ωc|). A
resonant signal photon (green arrows) is then sent from one
direction. Depending on the gate photon number, the sig-
nal photon is reflected (0, middle panel) or transmitted (1,
right). The transmission occurs as the stored Rydberg exci-
tation punches a hole of radius Rb in the array. Note that
the Rydberg excitation (and thus hole center) is delocalized
over a length ∼ w1 corresponding to the gate beam waist,
as roughly illustrated by the off-center hole in transmission.
(b) Optimal beam waists for the gate (red) and signal (green)
photons that yield the minimal switch error. The dashed line
corresponds to an analytical approximation, Eq. (C7) in Ap-
pendix C. (c) Optimal switch error εopt as a function of the
blockade radius Rb/d. We also plot the analytical approxima-
tion Eq. (8) in dashed lines. In the simulations, we consider
a Na = 412 square array with lattice constant d = λ0/2, and
infinite Rydberg interaction strength.

agation direction into a conditional phase. We consider
the three-level atom scheme from Fig. 1a, where the gate
and signal photons act on the |g〉−|e〉 transition (see Fig.
3a). First, the gate pulse, which is assumed to consist of
either zero or one photon, is split and sent toward the
array from both directions, and then stored by applying
a resonant control field (δc ≈ −δ), creating either zero or
one Rydberg excitation. Afterwards, the control field is
detuned to achieve Rydberg dressing. The signal photon
is finally sent from one direction with a frequency ad-
justed to compensate the Stark shift induced by the con-
trol field dressing. The signal then sees either a perfect
resonant mirror or a large transmitting hole depending
on the gate photon number.

We now analyze each step separately. As in other
works [7, 11], we consider the limit to fidelity arising
solely from the finite blockade radius, rather than lim-
ited atom number. We start with the storage of the gate
pulse. Similar to the non-unity reflection in Eq. (6),
the finite beam waist w1 of the gate photon results in
a storage error of 1 − η ≈ Cs(d)λ4

0/w
4
1 [21]. As will be

seen shortly, w1 will become a non-trivial optimization
parameter depending on the finite blockade radius Rb.
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Without the gate photon, all atoms are in state |g〉 and
the Rydberg dressing has no effect, such that an incom-
ing signal photon with beam waist w2 sees a mirror with
an error in reflectance of 1−R ≈ CR(d)λ4

0/w
4
2 due to fi-

nite beam waist. In the case of a stored gate photon, the
transmission error of the signal photon is somewhat more
complex. In particular, storing the gate photon leads
to a delocalized Rydberg excitation |Ψ〉 =

∑
j cj σ̂

rg
j |g〉,

where the state amplitudes follow the Gaussian profile of

the gate field, cj ∝ e−|rj |
2/w2

1 . For a Rydberg dressing

interaction V̂ reRyd with infinite strength, V → ∞, atoms

within the blockade radius cannot be excited to state |e〉.
A subsequent signal photon effectively sees a mirror with
a hole of size Rb, but where the hole center rj is in a de-
localized superposition with weights |cj |2 (Fig. 3a). Note
that the stored excitation itself introduces a single-atom
hole in the mirror, but does not introduce any error as
it belongs to the transmitting hole region. Furthermore,
the signal photon response is linear optical, as the stored
Rydberg excitation is static. It can be shown (see Ap-
pendix C) that the transmittance T for the signal photon
exactly corresponds to the weighted average

T =
〈Ê†TÊT〉sc
〈Ê†T,inÊT,in〉sc

=
∑
i

|ci|2T̄ (ri, w2, Rb), (7)

where T̄ (ri, w2, Rb) is the signal photon transmittance of
an array with a hole of radius Rb centered around atom
i. Intuitively, the transmission will only be efficient if
the uncertainty of where the hole is located, and the
beam waist of the signal photon, are small, w1,2

<∼ Rb.

We now quantify the overall fidelity of the switch,
starting with a numerical optimization. Here, our only
approximation involves the modeling of the Rydberg
dressing interaction as V̂ reRyd ≈

∑
i 6=j VΘ(Rb− rij)σ̂rri σ̂eej

with V → ∞, while the storage efficiency η, and condi-
tional reflectance and transmittance R, T depending on
the gate pulse are evaluated fully numerically. The total
switch error ε is then the maximal error between stor-
age/transmission and reflection, ε = max(1− ηT, 1−R).
In Figs. 3b,c we present the results for a 41x41 array (to
avoid errors associated with finite array size) with lattice
parameter d = λ0/2. For different values of the block-

ade radius Rb, we plot the optimal beam waists wopt
1,2

in Fig. 3b, and the minimal error εopt in Fig. 3c. Sep-
arately, using a toy model based on the considerations
above, we derive an analytical approximation of the er-
ror (Appendix C),

εopt(Rb, d) ≈ C [1 + log(Rb/d)]2

(Rb/d)4
, (8)

which agrees well with the full numerics. Notably, the
R−4
b scaling significantly outperforms the best-known

gate scaling ∝ R
−3/2
b in a disordered rEIT ensemble [7].

In Appendix C, we show that this scaling can be realized
in realistic settings, even when accounting for a finite

0 0.5 1 1.5
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0.2

0.4

0 0.5 1
0

0.1

0.2
0 0.5 1 1.5

0

0.5

1

0 0.5 1
0

0.5

1

...

step 1 step 2 step 3 final

FIG. 4. (a)-(b) Reflectance and (c)-(d) photon loss ver-
sus Rabi frequency Ω0/Γ0 for an incident Gaussian beam
(w0 = 0.4

√
Nad, d = λ0/2) and an array with Na = 16 or

Na = 36, as indicated. Different colors indicate different
values of blockade radius Rb (from top to bottom Rb/d =
0, 1,
√

2, 2,
√

5, 3 for Na = 16, and Rb/d =
√

8,
√

10, 4,
√

18, 5
for Na = 36). Symbols denote the exact numerical calculation
and solid lines are the semi-classical stochastic toy model. (e)
Example of the steps to obtain a configuration used in the
toy model. For each atom j with no assigned state (white
circles), a blockade region (brown shaded area in first panel)
is defined, comprising all atoms within the blockade disk cen-
tered at j but excluding those that have already been assigned
a state in a previous step. An unassigned atom among this
set is then randomly chosen, and the corresponding blockade
region is probabilistically assigned to be reflecting (blue) or
saturated (and thus effectively removed, red). The process
is iterated until all atoms are assigned (right panel), and the
optical properties of this configuration are calculated.

Rydberg interaction strength and realistic potential
shape.

Optical nonlinearities in the strong driving limit.– We
now turn to the case of an arbitrarily large driving field,
and study the optical response of the array depending on
the driving power and blockade radius. In particular, we
focus on the reflectance of light and on the photon loss,
defined as the fraction of intensity scattered into non-
detected modes beyond the reflected/transmitted Gaus-
sian fields, i.e. K = 1 − R − T . We will show that
this many-body quantum driven dissipative system can
be understood in terms of a semi-classical model, based
on holes being stochastically punched into the otherwise
perfect mirror.

We first present numerical results for Na = 16 and
Na = 36 square arrays. Numerically, we solve fully
Eq. (1) for the steady-state density matrix, exploiting the
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infinite Rydberg blockade strength V → ∞ to eliminate
impossible-to-excite basis states and setting δ = ∆k‖=0.
In Figs. 4a,b, we see that the reflectance monotonically
decreases with increasing Ω0 for all blockade radii, where
Ω0 is the Rabi frequency at the center of the beam.
This naturally arises from the saturation of the (Rydberg
dressed super-)atoms. In contrast, the photon loss dis-
plays a non-monotonic behavior strongly depending on
Rb (Figs. 4c,d). Furthermore, the maximum loss Kmax

occurs at some driving strength |Ωmax
0 |, with both values

depending non-trivially on Rb.

As previous intuition already suggests, it should be
possible to approximately model this behavior in terms
of transmitting/diffracting holes punched into a classical
mirror (as we show in the final panel of Fig. 4e, where
red and blue atoms illustrate effectively removed atoms
and remaining mirror atoms, respectively). This assign-
ment proceeds in a series of steps, starting with all atoms
with no assigned state. Then, regions of the blockade ra-
dius size are randomly selected, and randomly assigned
to be removed or kept depending on the probe field in-
tensity in that region, which dictates their probability of
saturation (see Appendix D). Once all atoms have been
assigned (Fig. 4e), we then calculate the corresponding
classical (weak driving) loss and reflectance of this partic-
ular configuration, repeating and averaging over ∼ 5000
configurations to obtain the loss and reflectance of the
system.

Despite being a semi-classical stochastic model, it
captures remarkably well the loss behavior for a wide
range of cases. In Figs. 4a-d we overlay the previous
numerical results with those predicted by the model
(solid lines). If one further assumes that the system
roughly consists of Nd independent and non-overlapping
blockade regions, which each have radius Rb and see
equal Rabi frequencies Ω, and neglects corrections
associated with finite array size, this model predicts that
the maximum loss decreases as Kmax = (1 − N−1

d )/2
(see Appendix D). In particular, the loss vanishes when
the system is fully blockaded and only a single excitation
can be created (Nd = 1).

Conclusions and outlook Here, we have shown that
2D atomic arrays with Rydberg interactions constitute
a powerful platform for quantum nonlinear optics, and
enable a gate with an error scaling better than that
of a disordered atomic ensemble. Beyond that, this
work also raises several interesting opportunities. First,
this work should stimulate immediate possibilities for
experiments, such as in quantum gas microscope setups,
where efficient reflectance has already been shown [23],
and where Rydberg dressing has separately already
been implemented [40, 41]. Furthermore, taking into
account previous results that arrays enable an expo-
nentially better error scaling for quantum memories,
we hypothesize that arrays could facilitate a better
scaling for all major applications involving quantum
atom-light interfaces, and it would be interesting to

develop the optimized protocols for those. Finally, al-
though we have focused on 2D arrays here, we anticipate
that studying quantum nonlinear optics in other array
geometries will generally be a rich area of future research.
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Appendix A: Rydberg dressing potential

Here, we derive the V̂Ryd term in the Hamiltonian of
Eq. (1b), which arises from coupling of the excited states
|e〉 with a high-laying Rydberg level |r〉. We start from
the Hamiltonian of the |e〉−|r〉 transition, which contains
the Rydberg interaction and the control field terms

Her =

Na∑
i,j=1,i<j

C6

r6
ij

σ̂rri σ̂
rr
j −h̄

Na∑
i=1

[δcσ̂
rr
i + (Ωcσ̂

re
i + h.c.)] ,

(A1)
where δc is the control field detuning, Ωc its Rabi fre-
quency and C6 a parameter related to the strength of
the Rydberg interaction. Within the dressing regime
(|δc| � Ωc), the coupling term with Ωc can be treated as
a perturbation, such that the number of atoms in |e〉 and
|r〉 are individually conserved, while the control field in-
duces energy shifts within each number manifold. As dis-
cussed in the main text, we consider two different dress-
ing scenarios. In the first one, no atoms are excited to
the Rydberg state |r〉, so it is sufficient to consider the ef-
fect of the control field on the manifold of excited states.
Using standard perturbation theory, the effective Hamil-
tonian for the |e〉 states up to fourth order is given by
[42, 43]

V̂ eeRyd ≈
Na∑
i=1

h̄∆acσ̂
ee
i −

Na∑
i,j=1,i6=j

h̄|Ωc|4

δ3
c

 1

1 +
r6ij
R6

b

 σ̂eei σ̂
ee
j ,

(A2)
where the blockade radius is defined as R6

b = C6/2h̄|δc|
with δc < 0 and C6 > 0. From Eq. (A2), we see that
atoms far away (rij � Rb) experience the Stark shift
∆ac = |Ωc|2/δc − |Ωc|4/δ3

c individually. On the other
hand, the Rydberg interaction disrupts the dressing of
the doubly excited states when two atoms in the |e〉 level
are close to each other (rij � Rb).

In the second scenario, a single, immobile Rydberg ex-
citation is first generated by storage of a photon. Then,
other atoms can be excited to states |e〉 by a probe field.
The effect of the stored Rydberg excitation on these ex-
cited states up to second order is described by the effec-
tive Hamiltonian

V̂ reRyd ≈
Na∑

i,j=1,i6=j

h̄|Ωc|2

δc

 1

1 + 2
R6

b

r6ij

 σ̂rri σ̂
ee
j . (A3)

In particular, it can be seen that excited atoms that are
much closer to the Rydberg excitation than a blockade
radius do not experience a Stark shift at all. The poten-
tials of the first and second dressing schemes from the
main text are Eqs. (A2) and (A3) after incorporating
the single-atom shift into the definition of the bare res-
onance frequency (ω0 → ω0 + ∆ac), approximating the

spatial dependence by the step function Θ(Rstep
b − rij)

[44] and defining V = h̄|Ωc|4/δ3
c or V = h̄|Ωc|2/δc, re-

spectively. In Fig. 5 we plot Eqs. (A2) and (A3) after
subtracting the single-atom stark shift ∆ac.
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b
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ee R
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V
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|r
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r
ij
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b

0

0.5

1

|V
re R
yd
-

ac
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V
|
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|e
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|r
|e
|g

|r

(b)

FIG. 5. (a) Rydberg dressing potential for a single atom in the
excited state |e〉 in presence of another atom also in the state
|e〉 at a distance rij (schematically represented by the atomic
levels {|g〉, |e〉, |r〉} and the blue spheres). Specifically, we plot
Eq. (A2) after subtracting the single-atom Stark shift ∆ac.
(b) Same as before but now the atom is in presence of another
atom in the Rydberg level. Thus, we plot Eq. (A3). Both
potentials have been rescaled respectively by V = h̄|Ωc|4/δ3c
and V = h̄|Ωc|2/δc. The distances have been rescaled by the
blockade radius Rb.

We now discuss how to relate the blockade radius Rb
in the microscopic model to that in the step function
approximation, Rstep

b . Physically, within the context of
nonlinear optics, the step function represents the radius
over which the array goes from transmitting to reflecting,
due to the excited state shift imparted given either an
excited or Rydberg atom at the center. From Eq. (5),
it can be seen that the excited state needs to be shifted
by an amount ∼ Γk‖ for an array to change its response
from being largely reflecting to transmitting. We thus
define |V̂ (Rstep

b )| = Γk‖=0, where V̂ is either Eq. (A2)

or Eq. (A3) for a single excited atom in presence of
another atom in the state |e〉 or |r〉 (respectively), and
after subtracting the single-atom stark shift |∆ac|. This
leads to the relation

R̃step
b ≈ Rb 6

√√√√κ

(
V

Γk‖=0
− 1

)
, (A4)

where V is that appropriate to the specific dressing
scheme and κ = 1 or κ = 2 depending on using Eq.
(A2) or Eq. (A3), respectively. In the main text, we sim-

plify the discussion by treating Rstep
b as an independent

variable and dropping the step label to reduce the com-
plexity in notation. In Sec. C 5, we will see that the errors
derived for the single-photon switch within the step func-
tion approximation agree well with those calculated from
the actual microscopic potential.

Appendix B: Steady state in the low driving
intensity limit

As stated in the main text, the dynamics of the atomic
degrees of freedom are governed by the master equation
Eq. (1). An equivalent formulation of the master equa-
tion is the quantum jump formalism, wherein the system
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is described by a wave function |Ψ〉 that evolves determin-
istically under the non-Hermitian Hamiltonian Eq. (1b),

ih̄∂t |Ψ〉 = Heff |Ψ〉 . (B1)

Within this formalism, the additional term Eq.(1c) in
the master equation is implemented via stochastic quan-
tum jumps applied to the wave function. However, in
the limit of weak input field, it is well-known [21, 45]
that the observables of interest (reflectance, transmit-
tance and normalized two-photon correlation function)
can be calculated neglecting the jumps.

To be specific, we consider the dressing regime where
no atoms are excited to |r〉, and the atoms can effectively
be described as being two-level. We furthermore expand
the wave function up to two atomic excitations, |Ψ〉 =

c(g) |g〉+
∑Na

j=1 c
(e)
j σ̂egj |g〉+

∑Na

j,k=1,j<k c
(2e)
jk σ̂egj σ̂

eg
k |g〉.

Applying Eq. (B1) to the wave function of the previous
form leads to a linear system of differential equations for
the coefficients:

iċ(g) = −
Na∑
j=1

Ωjc
(e)
j ,

iċ
(e)
j = −Ω∗jc

(g) − (δ + iΓ0/2)c
(e)
j +

Na∑
k=1,k 6=j

Hjkc(e)k +

− Ωj

Na∑
k=1,k 6=j

c
(2e)
jk ,

iċ
(2e)
jk = −

(
Ω∗jc

(e)
k + Ω∗kc

(e)
j

)
− 2(δ + iΓ0/2)c

(2e)
jk +

+

Na∑
l=1,l 6=j

Hjlc(2e)lk +

Na∑
l=1,l 6=k

Hlkc(2e)jl + · · ·

(B2)

where the dots denote the contribution from the three
excitations manifold, and where for simplicity we have

defined c
(2e)
jk ≡ c

(2e)
kj and the matricesHjk = Jjk−iΓjk/2.

The steady state coefficients are found by imposing the
time derivative to be zero in Eqs. (B2). Starting with
all the atoms in the ground state (|Ψ(t = 0)〉 = |g〉),
and replacing c(g) ≈ 1, it is possible to obtain an ex-
pression for the coefficients to lowest order in Ω0/Γ0

(c
(e)
j ∼ O(Ω0/Γ0) and c

(2e)
jk ∼ O(Ω2

0/Γ
2
0)).

Once the atomic degrees of freedom are solved, it is
straightforward to reconstruct the light observables from
the input-output relation Eq. (4). As a concrete exam-
ple, we consider the reflectance, which is defined as the
rate of photons collected back into the same input mode,

R = 〈Ê†RÊR〉 / 〈Ê†T,inÊT,in〉. Here 〈·〉 denotes the quan-
tum mechanical expectation value on the atomic degrees
of freedom, and thus the reflectance is directly given by
the correlation functions 〈σ̂egj σ̂

ge
k 〉.

Appendix C: Single-photon switch

In this section, we provide a more detailed analysis of
our proposed single-photon switch. First, we show that
given the storage of a gate photon, the formula for the
transmittance experienced by a subsequent signal pho-
ton indeed reduces to Eq. (7) of the main text, involving
a classical average over transmittance of an array with
holes punched in different positions. We then derive the
optimal switch error (Eq. (8) of the main text) by means
of a toy model characterizing the signal photon transmis-
sion. Finally, we address the retrieval of the gate photon
and discuss a realistic implementation of the switch by
going beyond the step function approximation for the
Rydberg dressing interaction, and considering the actual
potential derived from perturbation theory, Eq. (A3).

1. Formal theory of signal photon transmission

Here we derive the transmittance T from Eq. (7)
in the main text. We begin by considering the state
of the atomic array following storage of a gate photon,

|Ψ0〉 =
∑
i c

(r)
i σ̂rgi |g〉. Here, ci ∝ e−|ri|

2/w2
1 follows the

Gaussian spatial profile of the gate photon, and the wave
function is normalized to unity in the case of perfect stor-
age. Once the control field is detuned to create the Ryd-
berg dressing, the excitation in |r〉 no longer evolves, and
a signal photon is sent in the same Gaussian mode used
for detection in transmission, ÊT,in. Within a scattering

formalism, this composite state Ê†T,in|Ψ0, vac〉 formally
transforms to

|Ψsc〉 =
∑
i

Ê†i c
(r)
i σ̂rgi |g, vac〉. (C1)

Here, we have explicitly included the photonic compo-
nent of the system wave function, and Êi is the mode
into which the incoming photon scatters, if atom i was
in the Rydberg state. This mode could contain some
non-zero projection into the detectable Gaussian reflec-
tion and transmission modes, as well as a continuum of
other modes in 4π (thus representing loss). Note that
in the limit of an infinite array, the spatial modes asso-
ciated with Êi for different atoms i are identical, apart
from a translation corresponding to the position of atom
i within the array.

To proceed further, we can formally decompose the
mode Êi into the detection mode in transmission, and
orthogonal modes whose explicit forms are not needed,

|Ψsc〉 =
∑
i

c
(r)
i

(√
T̄ie

iφiÊ†Tσ̂
rg
i |g, vac〉+ |Orthog.〉

)
,

(C2)

where we have expressed the overlap between Êi and
ÊT in terms of a real number T̄ (ri, w2, Rb) and phase
φi(ri, w2, Rb). The overall transmittance of the signal

photon into mode ÊT is given by the total population
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in the state Ê†T|vac〉, which reproduces Eq. (7) in the
main text. While this expression was formally derived
by considering single-photon scattering, being a linear
process, T̄ (ri, w2, Rb) can also be calculated by consider-
ing the transmittance of weak coherent input light, which
is what we implement numerically.

2. Scattering properties of a single hole

Physically, T̄ (ri, w2, Rb) describes the transmittance of
a signal photon of beam waist w2, when atom ri is in a
Rydberg state and dressing interactions induce a block-
ade radius of size Rb. Here, we analyze more carefully
the properties of scattering, in the simple limit where the
interaction is approximated by a step function with infi-
nite depth V →∞, so that no atoms within the blockade
radius can be excited to state |e〉, thus punching a hole
in the atomic array.

In the following, we approximate the array as a con-
tinuous mirror with a circular aperture, such that scat-
tering can be treated in terms of classical diffraction the-
ory. In particular, for an input Gaussian beam aligned
with the aperture, it is well established that the frac-
tion of power transmitted at the other side simply cor-
responds to the fraction of input power hitting the aper-

ture, Ptra/Pin = 1 − e−2R2
b/w

2
2 [46]. This can also be

viewed as the overlap between the original Gaussian and
transmitted modes. Note that this is the total trans-
mitted power into all modes, including both the original
Gaussian and a set of orthogonal modes excited due to
diffraction. In our case, however, we are only interested
in the transmission back into the Gaussian mode. Due to
reciprocity, this is given by the previous overlap squared,
such that

T̄ (ri = 0, Rb, w2) =
∣∣∣1− e−2R2

b/w
2
2

∣∣∣2 , (C3)

where we have neglected corrections arising from the
finite total array size. Similarly, the fraction of power
reflected by the mirror with the aperture into all modes

is Prfl/Pin = e−2R2
b/w

2
2 , while projecting back into the

Gaussian mode gives R ≈ |e−2R2
b/w

2
2 |2. In Fig. 6a,

we perform a full numerical simulation of an array of
Na = 412 atoms illuminated with a weak, resonant
Gaussian beam of waist w2 = 5d, and with all atoms
within a radius Rb of the origin removed. We see that the
numerically evaluated reflectance and transmittance as
a function of radius Rb agree well with the approximate
formulas for T̄i and R derived above.

These results can readily be generalized by replacing

e−2R2
b/w

2
2 → ν in the previous formulas, where 1−ν phys-

ically describes the fraction of input beam power hit-
ting a hole in an array of any position and size. As one
relevant consequence, to be used later, the loss, defined
as the fraction of power that is neither transmitted nor
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w2w2
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FIG. 6. (a) Numerically calculated classical transmittance
(plotted as 1 − T , red circles) and reflectance R (green
squares) of a Gaussian field with beam waist w2 illuminat-
ing a large (Na = 41×41) array, with a hole (atoms removed)
of radius Rb at its center. Here, R, T are the projected re-
flectance and transmittance back into the Gaussian mode.
We also plot the analytical formulas for 1−T using Eq. (C3),

and R = |e−2R2
b/w

2
2 |2 in dashed black. (b) Reflectance (plot-

ted as 1− R) of a Gaussian field resonantly driving a square
atomic array of size Na = 41 × 41, with varying beam waist
w2. The reflectance is back into the same Gaussian mode.
We also plot Eq. (6) from the main text (dashed lines). In
both simulations, we consider a lattice constant d = λ0/2.

reflected into the original Gaussian mode, is given by
K = 1− T −R = 2ν(1− ν).

For completeness, we use the previous arguments to
justify the reflectance in Eq. (6). Considering a fi-
nite square mirror of size (Nd)2 illuminated by a Gaus-
sian beam, the fraction of power reflected is Prfl/Pin =

erf2(Nd/
√

2w2), where the rest of the light is leaked at
the edges of the mirror. The reflectance back into the
Gaussian mode is then this quantity squared, correspond-
ing to the first term in Eq. (6). In Fig. 6b, we see good
agreement between this analytical result and the numer-
ical evaluation of the reflectance from a finite array.

3. Approximate model for signal photon
transmission

Unfortunately, while T̄ (ri = 0) through a single hole
aligned with a Gaussian beam admits a simple, closed-
form expression, we do not find a simple solution for ν
once the hole is misaligned. Furthermore, the signal pho-
ton transmittance of Eq. (7) involves a weighted sum of
transmittance through off-center holes. We thus consider
a toy model that captures the essential physics, in or-
der to derive an approximate scaling. In particular, we
assume the signal photon has a top-hat spatial profile,
with radius w2. Then, the problem becomes purely geo-
metrical, as the transmittance involves the overlap area
between two circles of radius Rb and w2, separated by
a distance |ri| (Fig. 7a). Assuming that Rb > w2, we
identify three regimes of interest (Fig. 7b):

T̄ (ri, w2, Rb) ≈


1 for Rb − w2 > |ri|,
0 for |ri| > Rb + w2,

IB(ri, w2, Rb) else,

(C4)
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FIG. 7. (a) Sketch of the toy model used to calculate sig-
nal photon transmittance. We assume that the signal photon
consists of a top-hat profile with radius w2. The transmit-
tance then reduces to finding the intersection area between
this circle of radius w2 (green), and the hole created by a
locally stored Rydberg excitation (pink circle of radius Rb),
which are separated by a distance |ri|. (b) Reflection error
1−R (red) and storage/transmission error 1−ηT (blue) of the
switch as a function of the signal photon beam waist w2 and
after optimizing over the gate photon beam waist w1. The
total switch error ε is defined as the maximal error between
transmission and reflection (dashed green curve). We also
plot the function f(w) = (εT + εR)/2 (dashed black), whose
minimum coincides with the optimal (smallest) switch error.
The specific values are obtained from a numerical simulation
with Rb = 10d, Na = 412 and d = λ0/2.

where IB ∈ (0, 1) is a polynomial whose explicit form will
not be relevant here. Substituting the ansatz from Eq.
(C4) into Eq. (7), one finds

T =

∫ Rb−w2

0

2πρ|c|2 dρ+

∫ Rb+w2

Rb−w2

2πρIB |c|2 dρ, (C5)

where we have taken the continuous limit, and |c|2 =

2e−2ρ2/w2
1/(πw2

1) after normalizing the Rydberg popula-
tion to unity. Finally, considering Rb � w2 to neglect
the second integral in Eq. (C5), one obtains

T (w1, w2, Rb) ≈ 1− e−2(Rb−w2)2/w2
1 . (C6)

Next, we combine the previous Eq. (C6) with the ex-
pressions for η and R discussed in the main text to find
an analytical approximation for the optimal switch error,
which was defined as the maximal error between stor-
age/transmission (εt = 1−ηT ) and reflection (εr = 1−R).
For simplicity, we will use the ansatz w1 = w2 = w,
which is motivated by the results from Fig. 3c in the
main text. Intuitively, one expects the optimal switch
to have the same error in transmission and reflection.
This is illustrated in Fig. 7b for the particular case of
Rb = 10d, where we plot the numerically calculated re-
flection (red) and storage/transmission error (blue) for
different beam waists w2, with the minimum error occur-
ring at the intersection of these curves. However, solving
εr(w

opt) = εt(w
opt) leads to a transcendental equation for

wopt. To circumvent this, we can instead minimize the
function f(w) = (εr + εt)/2, whose minimum is also at
wopt (see Fig. 7b). Considering only the leading terms,

10 15 20

R
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/d

10-6
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10-2

1-
|

0|
ne
w
|2

FIG. 8. Overlap error (blue squares) between the state of the
array following storage |Ψ0〉 and the state |Ψnew〉 after the
detection of a signal photon in transmission. We also plot
the gate error (orange circles) from Fig. 3 for comparison.
In the simulations, we consider a Na = 412 square array of
lattice constant d = λ0/2. The beam waists are the ones that
optimize the switch error, which allows us to plot the data as
a function of the blockade radius.

the optimal beam waist is then given by

wopt(Rb, d) ≈ Rb

1 +
√

log(CεRb/d)
, (C7)

where the constant Cε(d) can be obtained by fitting the
data. For d = λ0/2, we get Cε ≈ 2. The optimal switch
error in Eq. (8) can be obtained by substituting wopt

from Eq. (C7) into εR(w) ≈ CR(d)λ4
0/w

4. In the main
text, we approximate the resulting expression to have a
single constant C(d), instead of two parameters CR(d)
and Cε(d) that unnecessarily complicate the discussion.

4. Retrieval of the gate photon

To operate our single-photon switch as a quantum
gate, one must also consider the error associated with
retrieving the first gate photon after the signal photon
has been scattered. In particular, while storing and di-
rectly retrieving the gate photon (absent the signal pho-
ton) would have the same efficiency η [21], from Eq. (C2),
one sees that conditioned on the signal photon being
transmitted into the desired mode ÊT , the remaining

Rydberg spin wave is altered, from |Ψ0〉 =
∑
i c

(r)
i σ̂rgi |g〉

to |Ψnew〉 = N
∑
i c

(r)
i

√
T̄ie

iφi σ̂rgi |g〉. Here, N is a nor-
malization factor such that |Ψnew〉 has unit norm (the
smaller than unity norm without this factor describes
the probability that the signal photon was not success-
fully transmitted, and its error has already been included
in previous analysis). We now show that the additional
error in retrieval due to this change of state is negligible
compared to the total switch error previously calculated.

From time reversal symmetry, the excitation in the
state |Ψ0〉 can be retrieved with efficiency η, which we
know is optimal. Then, any other state |Ψi

⊥〉 orthog-
onal to |Ψ0〉 will have a lower retrieval efficiency ηi⊥.
Decomposing |Ψnew〉 in the basis of |Ψ0〉 plus other or-
thogonal states, one can express the retrieval efficiency
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of the distorted excitation as ηnew = η|〈Ψ0|Ψnew〉|2 +∑
i η
i
⊥|〈Ψi

⊥|Ψnew〉|2. In Fig. 8, we show that the dis-
tortion in the stored excitation (quantified by the over-
lap error 1 − |〈Ψ0|Ψnew〉|2) is smaller than the optimal
gate error. Thus, even in the worst case scenario where
ηi⊥ = 0, one can still approximate ηnew ≈ η.

5. Switch error beyond the step-function
approximation

So far, we have approximated the Rydberg dressing in-
teraction as a step-function potential with infinite depth
V →∞. In the following, we will show that the optimal
switch error from Eq. (8) can be achieved under realis-
tic conditions, i.e. taking into account the real potential
derived from perturbation theory, Eq. (A3), and for a
finite interaction strength V = |Ωc|2/δc.

First, we numerically optimize the switch error con-
sidering the real potential (i.e. without the step func-
tion approximation). In Fig. 9 we show the resulting
εopt (solid lines) as a function of the microscopic blockade
radius Rb from Eq. (A3), and for different V . For now,
we take Rb and V to be independent parameters, while
their dependence on laser parameters and principal quan-
tum number is discussed later. Interestingly, now εopt is
not arbitrarily small for increasing blockade radius as it
saturates to a specific value in the limit Rb → ∞. For
moderate interaction strengths (V <∼ 100 Γ0), the satu-
ration arises from the non-zero reflectance of the atoms
within the blockaded region, which are not completely
shifted out of resonance due to V being finite. According
to Eq. (5), this introduces an error in transmission given
by εV ∼ 1/(1 + 4|V |2/|Γk‖=0|2) that lower bounds εopt

as a function of V . On the other hand, for very large in-
teraction strengths (V >∼ 103Γ0), εV becomes negligible
and transmission can be considered as perfect. However,
the saturation still appears, now due to the finite array
size error εN that prevents perfect reflection, as we dis-
cussed in the main text. Thus, according to Eq. (6),
even if V → ∞ and Rb → ∞, the switch error will still
be fundamentally limited by εN = 1− erf4(Nd/

√
2w2).

To generalize Eq. (8) beyond the step function
approximation and to validate our interpretation of
the solid lines in Fig. 9, we add the aforementioned
errors εV and εN to the optimal switch error ε(Rstep

b )
from the main text. In addition, we use Eq. (A4) to

express Rstep
b as a function of the microscopic Rb, in

order to compare on the same plot. In Fig. 9 we plot
εopt(Rstep

b ) + εV + εN (dashed lines), in terms of the
microscopic Rb. Overall we observe a good agreement
between solid and dashed lines, which validates our
previous claims.

Finally, we discuss the experimental feasibility of the
values for Rb and V used in Fig. 9. As a concrete ex-
ample, we will consider the use of 87Rb atoms and as-
sume the Rydberg states are reached following the widely
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FIG. 9. Optimal gate error as a function of the microscopic
blockade radius Rb considering the real potential derived from
perturbation theory [Eq. (A3)]. Each color represents a dif-
ferent interaction strength V = [5, 10, 20, 40, 102, 103]Γ0, re-
spectively from light to dark blue. The solid lines are the
results of a numerical simulation with a square array with
Na = 412 and lattice parameter d = λ0/2. The dashed lines
are obtained substituting Eq. (A4) into Eq. (8) from the
main text and adding the errors associated to finite V and
finite array size.
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FIG. 10. Realistic values for the blockade radius Rb (a)
and control field power Pc (b) as a function of the control
field detuning δc, rescaled by the linewidth Γ0 = 2π × 6.065
MHz of the |e〉 → |g〉 transition of 87Rb. To obtain these
plots, we work at the limit of validity of perturbation the-
ory, where Ωc ≈ δc and V ≈ δc. Each color represents
a different Rydberg state with principal quantum number
n ∈ {30, 40, ..., 100}, respectively from light grey to either
purple or red. The yellow circle indicates the case of a pho-
ton switch with 99% efficiency.

used transition scheme |g〉 = |5S1/2〉 → |e〉 = |5P3/2〉 →
|r〉 = |nS1/2〉 [47–49], with the ground-excited state tran-
sition wavelength of λ0 = 780.0 nm, lattice constant
d = λ0/2, and excited state spontaneous emission rate
Γ0 = 2π× 6.065 MHz [50]. More specifically, an approxi-
mate two-level transition can be realized by utilizing a cy-
cling transition, where the ground and excited states have
maximum angular momentum and are connected via a
circularly polarized transition, |g〉 = |F = 2,mF = 2〉
and |e〉 = |F = 3,mF = 3〉. It is known that dipole-
dipole interactions in the presence of hyperfine struc-
ture can induce transitions out of this manifold, as the
re-scattered field seen by a ground-state atom, coming
from another excited atom, does not necessarily have the
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same circular polarization [51]. However, the probabil-
ity of this is suppressed both by the squared ratio of
Clebsch-Gordan coefficients between the undesired and
desired transitions (1/15 for 87Rb), and by the applica-
tion of magnetic fields, to realize a differential Zeeman
shift δZeeman between the undesired and desired tran-
sition resonance frequencies (with a corresponding sup-
pression ∼ (Γ0/δZeeman)2).

Within such a scheme, we now consider the Rydberg
interaction properties. To reduce the number of parame-
ters, we will work in the limit of validity of perturbation
theory for the Rydberg dressing scheme, where Ωc ≈ δc
and V ≈ δc. In Fig. 10a we plot the blockade radiusRb as
a function of the detuning δc for different principal quan-
tum numbers n. The values for the C6 coefficient have
been obtained by fitting the data from Refs. [52–54] with
the function C6(n) = C0n

11. Additionally, we also calcu-
late the control field power Pc = 2ε0c|δc|2h̄2A/|℘er|2 re-
quired to achieve a specific V ∼ δc, where the surface illu-
minated by the control field A is taken to cover the array
in the simulations A = π(20d)2. The value for the dipole
moment ℘er = (43/n)3 · 0.0103a0e is taken from Ref.
[55] and rescaled to arbitrary n. Combining the results
from Fig. 9 and 10, we conclude that a single-photon
switch with 99% efficiency can be already achieved with
a control field of δc ∼ 2π × 30MHz, Pc ∼ 100mW and
n ∼ 60, which are consistent with the typical values cur-
rently used in state-of-the-art experiments [53, 56].

Appendix D: Strong driving limit

1. Stochastic semi-classical model

Here, we describe in more detail the stochastic semi-
classical model that we have used to model the reflectance
and loss of a 2D array in the strong driving limit. In the
following we specify the procedure that determines how
atoms are assigned to be saturated and effectively re-
moved or not (as illustrated in the piece-wise steps of
Fig. 4e, where red and blue atoms illustrate removed
atoms and remaining mirror atoms, respectively).

This assignment proceeds in a series of steps, start-
ing with all atoms with no assigned state. In each step,
we apply the following rules: (i) we take all atoms j
that have not yet been assigned a state, and define the
blockade region containing N j

b atoms as the intersection
between the subset of atoms with no assigned state and
the blockade radius centered at j (see as an example the
brown enclosed region in the first panel of Fig. 4e). (ii) A
single atom j from this subset is randomly chosen follow-
ing the probability Ω2

jN
j
b /
∑
j Ω2

jN
j
b . Here Ωj is the local

Rabi frequency at rj , and this quantity accounts for the
likelihood that a dressed Rydberg superatom centered
around j becomes excited. (iii) The N j

b atoms contained
in the corresponding blockade region of j are randomly
assigned to be saturated or unsaturated according to the
probability pj = sj/(1 + sj). The saturation parame-

ter coincides with the usual one for a single two-level
system, but with a collectively enhanced Rabi frequency√
N j
bΩj and collectively modified decay rates and reso-

nance shifts, sj = 8N j
bΩ2

j/[Γ
2
k‖=0 + 4(δ−∆k‖=0)2]. Once

all atoms have been assigned, we then numerically calcu-
late the corresponding linear classical loss and reflectance
of this particular configuration in the weak driving limit,
by effectively removing all the atoms in the saturated
regions. We then repeat, sampling over ∼ 5000 configu-
rations and averaging to obtain the loss and reflectance
of the system, respectively.

2. Approximate analytical behavior of
semi-classical model

While the reflectance and loss of the previously dis-
cussed toy model are still calculated numerically, it is
possible to obtain analytical approximations with a few
additional assumptions. In particular, we assume that
the system is illuminated by a beam of area A, and
can thus roughly be divided into Nd = A/Nbd

2 indepen-
dent and non-overlapping blockade regions, each of radius
Rb and Nb ∼ πR2

b/d
2 atoms, which all see equal Rabi

frequency Ω and individually saturate with probability
p = s/(1 + s), where s = 8NbΩ

2/[Γ2
k‖=0 + 4(δ−∆k‖=0)2]

is the saturation parameter for the uniform field defined
analogously as before.

The probability for m of these regions to be saturated
and transmit light then follows a binomial distribution,
P(m) =

(
Nd

m

)
pm(1 − p)Nd−m. Each of these configura-

tions diffracts light as if it was a classical mirror with
m punched holes. We then generalize the result for the
loss caused by a single hole in Appendix C.2 to the case
of multiple holes; in particular, with a total fractional
area ν = m/Nd removed from the mirror, the loss follows
Kcl ≈ 2ν(1 − ν), largely independently of the size and
number of the regions. The total loss is then evaluated
as a statistical average over any possible number of holes,

K =
∑Nd

m=0 P(m)Kcl(m/Nd), and reduces to the simple

expression K = 2N−1
d

[
〈m〉 −N−1

d 〈m2〉
]

= 2p(1−p)(1−
N−1
d ), where 〈·〉 indicates an average of a random variable

following a binomial distribution. In particular, it can be
seen that the maximum loss Kmax = (1−N−1

d )/2 mono-
tonically decreases as a function of decreasing number of
independent blockade regions, reaching K = 0 uniformly
for Nd = 1. On the other hand, the maximum loss for any
Nd > 1 is achieved when p = 0.5, which corresponds to a

Rabi frequency of Ωmax =
√

Γ2 + 4(δ −∆k‖=0)2/
√

8Nb.

In Fig. 11, we compare the analytical approximation
for Kmax with numerical simulations, for square arrays
with Na = 16, 25, 36, 49, and 100 atoms, and varying
blockade radii Rb. These simulations involve both full
numerical density matrix simulations (red points), and
the semi-classical stochastic model (black). In particu-
lar, for each system size and blockade radius, we drive the
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FIG. 11. Maximum loss as a function of N−1
d = Nbd

2/2πw2
0,

where Nd roughly corresponds to the number of blockade re-
gions. Red and black symbols correspond to the exact nu-
merical result and the numerical stochastic model, respec-
tively, for an array with Na = 16 (open circles), Na = 25
(squares), Na = 36 (solid circles), Na = 49 (crosses) and
Na = 100 (stars) atoms. The data collapse onto a univer-
sal curve that tends to the analytical model result Kmax =
(1 − N−1

d )/2 (dashed line), in the limit of small N−1
d . The

simulations are done with a lattice constant of d/λ0 = 0.5 and
beam waist w0 = 0.4

√
Nad).

system with a Gaussian beam of waist w0 = 0.4
√
Nad,

and find the power at which the maximum loss Kmax

occurs. We then plot Kmax as a function of the approxi-
mate number of blockade regions, Nd = 2πw2

0/Nbd
2. We

find that the data points collapse onto a single universal
curve, and that as long as N−1

d
<∼ 1 (the regime of multi-

ple independent blockade regions), this curve agrees well
with the formula Kmax = (1−N−1

d )/2 (dashed line). For

large N−1
d , the maximum loss becomes nearly zero, with

the difference from the simple formula largely being at-
tributable to the inhomogeneity of the beam across the
system, which is not accounted for in our simple analyt-
ical model.
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